

Cutting Performance Comparison of FG 330 EdgeDental Carbide Burs

Product insights vou can trust.

M. Cowen, J.M. Powers

Biomaterials Research Report

Matt Cowen, B.S. DENTAL ADVISOR Biomaterials Research Center 3110 West Liberty, Ann Arbor, MI 48103 (734) 665-2020, ext. 111 matt@dentaladvisor.com

Number 125 May 15, 2019

Introduction:

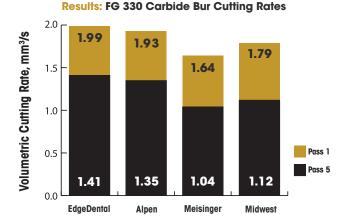
This study compares the cutting efficiency and durability of FG 330 Carbide Burs and provides a visual SEM comparison of the bur products before and after cutting. A custom bur test jig utilizing an electric handpiece and a specimen carriage that holds the substrate while the carriage is pulled into the rotating bur is used to perform the testing. The system is driven by a universal test machine crosshead that was programmed to deliver a constant force when pulling the carriage.

Experimental Design:

Materials and Equipment: **DENTAL ADVISOR Bur Testing Platform**

Intramatic Lux 2 Electric Handpiece and Intra Lux KL 701 Motor (Kavo Kerr) operated at 150K RPM

Macor[®] substrates, 20 mm x 20 mm x ~7mm thick (depth of cut, ~1.4 mm)


FG 330 Carbide Burs: FG330 [Lot: 1183807] (EdgeDental), Alpen Carbide 330 FG [Lot H56144] (Coltene/Whaledent Inc.), Midwest FG330 [Lot 10458606] (DENTSPLY Sirona), Meisinger Singles 330 [lot R22611] (Meisinger)

Repetitions: 5 identical burs of each product tested, with 5 passes for each bur (100 mm of cutting)

Methods:

The bur test machine is composed of an electric handpiece driving the test burs while positioned over a carriage holding the Macor® test specimens. The carriage holding the specimen is moved into the rotating bur by a cable connected between it and the cross-head of a universal test machine (Instron 5866) operated in load control. A dry run without cutting was performed before every bur to measure the friction inherent in the system and the load zeroed to 0 +/- 0.05 N over the total length of travel. The applied load was held constant at 1.0 N as the Macor® specimen was moved against the bur. The electric handpiece was operated at 150k RPM with a deionized water spray.

Due to differing bur lengths of approximately 0.5 mm from shortest to longest, spacers were made to raise the Macor® specimen holding platform to equalize the depth of cut for each specimen. Depth of cut was set at 1.4 +/- 0.2 mm. The depth of cut of each pass was measured with a micrometer attached to a binocular microscope at 10X magnification on each end of the cut Macor® slabs and averaged. Microscopic images were captured on the ends of cut specimens and the cross-sectional area measured using the depth of cut and ImageJ software (NIH). Average volume of cut per mm of depth of cut was calculated from 3 measurements of area for each bur. Cutting volume was calculated by the cross-sectional area x 18 mm of linear cutting distance. The volumetric cutting rate was calculated by dividing the cutting volume by the time measured to cut from 2 to 20 mm for each repetition. The mean volumetric cutting rate and standard deviations are reported in the results.

SEM images of a new bur taken directly out of the package and ultrasonically cleaned used burs were taken with a Tescan MIRA3 microscope at the Michigan Center for Materials Characterization.

Macor® Ceramic Substrate

DENTAL

FG 330 Carbide Burs				
	EdgeDental	Alpen	Meisinger	Midwest
Pass	Volumetric Cutting Rate, mm ³ /s			
1	1.99 (0.16)	1.93 (0.13)	1.64 (0.11)	1.79 (0.11)
2	1.83 (0.20)	1.74 (0.12)	1.48 (0.12)	1.64 (0.13)
3	1.67 (0.21)	1.58 (0.15)	1.31 (0.14)	1.49 (0.16)
4	1.55 (0.23)	1.46 (0.11)	1.21 (0.19)	1.31 (0.20)
5	1.41 (0.28)	1.35 (0.14)	1.04 (0.18)	1.12 (0.23)
Overall Average	1.69 (0.29)	1.61 (0.24)	1.34 (0.25)	1.47 (0.29)
Decrease in cutting rate after 5 passes, %	29.2	30.2	36.6	37.7

Cutting rates are shown with means and standard deviations. Midwest and Meisinger burs had a larger drop in cutting rates after 100 mm of cutting (37.7% and 36.6%) than EdgeDental and Alpen burs (29.2% and 30.2%).

Conclusion:

EdgeDental FG 330 carbide bur demonstrated an above average cutting rate and higher durability compared to similar carbide burs on the market.

Fig.1: Visual Comparison of New vs Used FG 330 Burs

EdgeDental New

EdgeDental Used

Meisinger New

Meisinger Used

Alpen New

Alpen Used

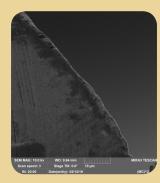
Midwest New

Midwest Used

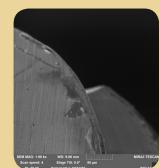
Fig.2: Comparison of the cutting profile of the tested burs.

EdgeDental

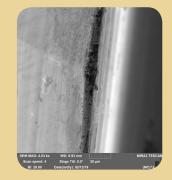
Alpen

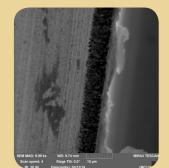


Meisinger



Midwest


Fig.3: High magnification images of cutting edges before and after use of an EdgeDental Bur showing moderate wear of cutting edges


EdgeDental New

EdgeDental Used

EdgeDental New

EdgeDental Used

